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Abstract

Exact numerical solutions, essentially free of empiricism were obtained for fully developed turbulent forced conven-

tion in concentric circular annuli with uniform heating on the inner wall and no heat transfer the through the outer wall.

The numerically computed values of Nu are represented almost exactly as a function of Nu0, Nu1, Nu1, and Prt/Pr.

Here, Nu0 and Nu1 are the limiting and asymptotic solutions for Pr = 0 and Pr! 1 respectively, and Nu1 is the special

solution for Pr = Prt � 0.8673. The predicted values for all Re, all Pr, and all aspect ratios are in agreement with the

experimental data within their scatter.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Double-pipe heat exchangers, in which one fluid

passes through an inner round tube and a second fluid

through the annulus formed by a concentric outer round

tube, are utilized extensively in industrial processing.

Such heat exchange invokes many parameters, including

the aspect ratio a1/a2, and, for single-phase fluids, the
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relative direction of flow of the two streams (concurrent

or countercurrent), the two mass rates of flow, and two

sets of physical properties such as k, c, l, and q. For the
transfer of sensible heat between countercurrent streams

of the same fluid at the same enthalpic rate, a uniform

heat flux density occurs over the dividing surface insofar

as changes in the physical properties with temperature

can be neglected and insofar as the exchanger is of suf-

ficient length so that end-effects (developing flow and/or

developing convection) can also be neglected. This ther-

mal boundary condition may also be established, at least

approximately, by longitudinal electrical heating of an

solid axial core. On the other hand, one of the fluid

streams may condense or boil. Because of the large heat

transfer coefficients for boiling and condensing, an
ed.
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Nomenclature

a1 inner radius of annulus (m)

a2 outer radius of annulus (m)

a0 radius of zero shear stress (m)

amax radius of maximum in velocity (m)

a+ dimensionless radius [a(swq)1/2/l]
c specific heat capacity (J/kgK)

D diameter (m)

f Fanning friction factor ½2sw=qu2m�
h heat transfer coefficient (W/m2K)

kt eddy conductivity (W/mK)

k thermal conductivity (W/mK)

j radial heat flux density (W/m2)

Nu Nusselt number [2h(a2 � a1)/k]

Nu0 Nu{Pr = 0}

Nu1 Nu{Pr = Prt}

Nu1 Nu{Pr !1}

P pressure (Pa)

Pr Prandtl number [cl/k]
Prt turbulent Prandtl number

Prðu0v0 Þþþ 1�ðT 0v0 Þþþð Þ
ðu0v0Þþþ

1�ðT 0v0Þþþð Þ

� �
r radial coordinate (m)

r+ dimensionless radius [r(sw1q)
1/2/l]

R radius ratio [r/a1]

Re Reynolds number [2(a2 � a1)qum/l]
T time-averaged temperature (K)

T+ dimensionless temperature [k(qsw1)
1/2

(Tw1 � T)/ljw1]
Tm mixed-mean temperature (K)

T 0 fluctuating component of temperature (K)

T 0v0 time-average of product of fluctuating tem-

perature and velocity (Km/s)

ðT 0v0Þþþ
local fractional of radial heat flux density

due to turbulence [qcT 0v0=j]

u axial component of time-averaged velocity

(m/s)

u+ dimensionless axial velocity [u/(qsw1)
1/2]

um mixed-mean axial velocity (m/s)

u 0 fluctuating component of axial velocity (m/

s)

u0v0 time-average of product of fluctuating com-

ponents of velocity (m2/s2)

ðu0v0Þþþ
local fraction of shear stress due to turbu-

lence [�qu0v0=s]
ðu0v0Þþ alternative dimensionless shear stress

[�qu0v 0/sw1]
v radial component of time-averaged velocity

(m/s)

v 0 fluctuating component of radial velocity (m/

s)

y distance from wall (m)

y+ dimensionless distance from wall [y(qsw)
1/2/

l]
z axial coordinate (m)

c [(j/jw1)(sw1/s) � 1]

l dynamic viscosity (Pas)

lt eddy dynamic viscosity (Pas)

q specific density (kg/m3)

s shear stress (Pa)

sw shear stress at wall (Pa)

Subscripts

w1 based on shear stress on the inner wall

w2 based on shear stress on the outer wall

wm based on mean shear stress on the walls
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essentially uniform temperature is then attained on the

surface through which heat is being transferred. Because

the postulate of either a uniform heat flux density or a

uniform surface temperature greatly simplifies theoreti-

cal modeling, and because uniform heating generally

constitutes an upper bound and uniform wall tempera-

ture a lower bound for the convective heat transfer coef-

ficient, most analyses of heat transfer postulate one or

the other of these two thermal boundary conditions even

though the required conditions are never wholly fulfilled

in practice. Effective thermal insulation is usually placed

on the outer surface of a double-pipe heat exchanger to

reduce heat losses to the surroundings and/or to protect

personnel from extreme temperatures. Accordingly, the

postulate of an adiabatic external surface is usually a

reasonable one. This latter conclusion has been also

been reached by prior analysts and experimentalists.
In the current investigation, a uniform heat flux den-

sity on the inner surface, perfect insulation on the outer

surface, sensible transfer heat only, fully developed tur-

bulent flow, fully developed one-dimensional convec-

tion, and invariant physical properties are postulated.

The latter two conditions are difficult to establish exper-

imentally. Positioning of the inner tube or core along the

axis, particularly for very small aspect ratios, without

introducing entrance and exit effects in the flow is a real

challenge experimentally, while even a slight misalign-

ment or mislocation perturbs the velocity distribution

and may result in a secondary motion. These distur-

bances of the flow by the supports for the central tube

or core as well as those due to its misalignment and/or

mislocation may influence the value of the heat transfer

coefficient significantly. The large temperature differ-

ences that are necessary if the heat transfer coefficient
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is to be determined with accuracy, but may result in sig-

nificant radial variations in the viscosity, thermal con-

ductivity, and density, which in turn perturb the value

of the heat transfer coefficient. These physical property

effects are a function of the temperature distribution in

the fluid near the wall and are not uniquely characterized

by the temperature-difference between the wall and the

bulk of the fluid. They are also fluid-specific and depend

on whether the fluid is being heated or cooled.

Because of the great industrial importance of double-

pipe heat exchangers, one might expect to find in the

archival literature many theoretical analyses, many sets

of experimental data, and many correlating equations

for heat transfer in annuli. This expectation is fulfilled

to a degree, but most of the sets of relevant experimental

data that were identified in the course of this investiga-

tion are quite old, quite limited in scope, and, as indi-

cated by their scatter, of poor precision and accuracy.

The secondary effects mentioned in the previous para-

graph have rarely been investigated in a controlled man-

ner. Many of the sets of measurements are given only in

graphical form or in compound forms such asNu/RePr1/3

f1/2 without separate specification of Re, Pr, and f,

thereby making the determination of Nu in future stud-

ies such as the current one uncertain in a numerical

sense. Leung [1] presented a thorough and very discern-

ing review of the experimental data that preceded his

own work, precluding the need for detailed discussion

of that work here, while more recently Childs and Long

[2] reviewed the surprisingly few subsequent experimen-

tal and theoretical investigations. Despite its age, by far

the most reliable numerical analysis of broad scope ap-

pears to be that of Leung (also reported in [3]). The

other analyses, with one exception, need not be men-

tioned herein. Most of the prior numerical analyses,

including that of Leung, although generally sound in

their basic formulation, are subject to considerable error

because of the utilization of the eddy viscosity to repre-

sent the time-averaged turbulent shear stress, and in

most cases, incoherent and inaccurate expressions for

that heuristic quantity and for the time-averaged veloc-

ity distribution. The eddy diffusivity is invalid in a fun-

damental sense in annular flow. (See, for example, [4].)

Instead of the eddy diffusivity, the analysis of Wilson

and Medwell [5] utilized a mixing-length formulation,

which is also invalid in a fundamental sense. Further-

more, they introduced an erroneous functional depend-

ence for the velocity and thereby for the mixing-length

on distance from the nearest wall. Many of the prior

numerical analyses, although not those of Leung and

of Wilson and Medwell, are subject to further uncer-

tainty because of the postulate of an overly idealized

total heat flux density distribution. Direct numerical

simulations (DNS) are free of these fundamental sources

of error, but they are at present limited to rates of flow

barely above the minimum for the attainment of fully
developed turbulence. The correlative and predictive

equations in the literature for Nu are almost all based

on the adaptation of a prior power-law-type expression

for round tubes simply by introduction of the hydraulic

diameter as the characteristic dimension.

The numerical calculations of convection in this

investigation depend critically upon the spatial distribu-

tion and parametric dependences of both the turbulent

shear stress and the total shear stress. The time-averaged

velocity distribution and the space-mean velocity also

serve as nominal inputs but their values are fixed unam-

biguously, both functionally and numerically, by the dis-

tribution of the turbulent shear stress. The thermal

results herein are presumed to constitute an improve-

ment over prior ones primarily by virtue of the use of

essentially exact values for the radial distribution of

the total heat flux density and for the fractions of the

total shear stress and the heat flux density due to turbu-

lence. The merit of the direct use of the dimensionless

turbulent shear stress as a variable for the description

and prediction of flow in an annulus is amply demon-

strated by Kaneda et al. [6] in Part I of this investigation

and will not be belabored here. The uncertainty in the

results for flow due to the use of empirical expressions

for the location of the maximum in the velocity distribu-

tion and the zero in the total shear stress distribution

carries over to the thermal computations but is not pre-

sumed to be significant in either case. Only those expres-

sions for flow that are directly utilized for the calculation

of convection are reproduced here.

For any chosen set of thermal boundary conditions,

one additional independent parameter arises in the ther-

mal calculations relative to those for flow, namely the

Prandtl number, Pr = cl/k, as well as one dependent

parameter, namely the turbulent Prandtl number, Prt.

This latter quantity, which was originally defined in

terms of the eddy viscosity lt, and the eddy conductivity

kt, is redefined herein in terms of non-heuristic variables

but it remains a source of uncertainty.

Computed values of Nu for turbulent flow in annuli

for the less important cases of uniform heating or cool-

ing on the outer wall, for combined heating or cooling

on both walls, and for heating or cooling with uniform

wall temperature(s) will be presented in Part III. Finally,

generalized algebraic predictive equations for all of these

thermal boundary conditions and all values of Re, Pr,

and a1/a2, including the limiting cases of round tubes

and parallel- plate channels will be presented in Part IV.
2. Formulations for flow

The time-averaged and once integrated differential

momentum balance for steady fully developed flow of

a fluid with invariant physical properties in a circular

concentric annulus may be expressed as
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s ¼ �l
du
dr

� �
� qðu0v0Þ: ð1Þ

Here, s is the total time-averaged shear stress in the z

(axial) direction imposed on the fluid at r, the radial dis-

tance from the axis by the fluid at greater values of r; l
and q are the dynamic viscosity and specific density of

the fluid; u is the local time-averaged velocity; and

ðu0v0Þ is the local time-averaged product of the fluctuat-

ing components of the velocity in the axial and radial

directions. Churchill and Chan [4] proposed that Eq.

(1) be re-expressed in the following dimensionless form:

s
sw1

¼ duþ

dyþ
þ ðu0v0Þþ: ð2Þ

Here, sw1 is the shear stress in the fluid at the inner wall,

u+ = u(q/sw1)
1/2 and y+ = y(qsw1)

1/2/l are the classical

‘‘wall-variables’’ of Prandtl, and ðu0v0Þþ ¼ �qðu0v0Þ=sw1
is their analog for the local turbulent shear stress. This

latter dimensionless variable may be interpreted physi-

cally as the local turbulent shear stress as a fraction of

the shear stress at the wall. Eq. (2), as well as Eq. (1),

is exact within the afore-mentioned restrictions on the

flow and fluid.

Rather than following the traditional path, which

consists of introducing a heuristic expression such as

the eddy viscosity to represent the local turbulent shear

stress in Eq. (2), and devising a correlating equation for

that quantity, Churchill and Chan [7] devised a theoret-

ically structured correlating equation for ðu0v0Þþ itself,

which Heng et al. [8] subsequently up-dated numerically

on the basis of the new improved experimental data of

Zagarola [9] for u{y+} and uþm in a round tube. The con-

cept of Churchill and Chan [4] of utilizing the dimen-

sionless turbulent shear stress as a variable rather than

introducing some heuristic quantity such as the eddy vis-

cosity proved to be even more advantageous than ex-

pected in that the common correlating equation for

ðu0v0Þþ for flow in round tubes and between parallel

plates was found to be simpler than the equivalent one

for the eddy viscosity. Furthermore, as a direct conse-

quence of the use of ðu0v0Þþ as a variable, they discovered

that the mixing length is singular in all channels, and

also confirmed on new theoretical grounds the validity

of the assertion of Maubach and Rehme [10] that the

eddy viscosity is singular at one point and negative over

an adjacent region in all channels (such as annuli) for

which the velocity distribution is not symmetrical or

anti-symmetrical. It follows that all solutions for flow

in annuli based wholly on the eddy viscosity, are funda-

mentally unsound and subject to functional as well as

numerical inaccuracies on that basis. Large eddy simula-

tion (LES) appears to be valid for annuli insofar as the

eddy diffusivity is not utilized near r = a0, but the use

of ‘‘wall functions’’ is inferior numerically and function-
ally to the direct use of the turbulent shear stress in the

buffer and viscous sublayers. Churchill [11] subsequently

proposed the use of ðu0v0Þþþ ¼ �qðu0v0Þ=s, which may be

interpreted as the local fraction of the shear stress due to

turbulence, rather than ðu0v0Þþ. This alternative dimen-

sionless variable was found to simplify the process of

carrying out numerical solutions for flow in round tubes

and parallel-plate channels. However, in annuli it shares

the singularity of the eddy viscosity and the mixing

length and is thereby inapplicable.

In view of these several considerations, Kaneda et al.

[6] devised separate correlating equations for ðu0v0Þþ for

the inner and outer regions of annuli (as defined by

r = amax) on the basis of the correlating equation of

Churchill and Chan [7] for the turbulent shear stress in

round tubes and parallel-plate channels as up-dated

numerically by Heng et al. [8]. The resulting expressions

for ðu0v0Þþ for the inner and outer regions of annuli are

much more complex than the common single one for a

round tube and a parallel-plate channel because of the

asymmetry of the flow and the related non-linear varia-

tion of the total shear stress across the annulus. In the

interests of brevity and minimal repetition, the detailed

expressions for ðu0v0Þþ are not reproduced here. In spite

of their relative complexity, these modified expressions

proved to be quite successful as an input to the numer-

ical integrations for the velocity distribution and the

friction factor for all aspect ratios and for a complete

range of the rate of flow above the minimum for fully

developed turbulence. The accuracy of the resulting pre-

dictions of u+{y+} and uþm in annuli, as established by

comparisons with experimental data, provides confi-

dence in the use of direct adaptations of the correlating

equations for ðu0v0Þþ for round tubes and parallel-plate

channels, along with their counterparts for u+ and uþm,
to predict convection in annuli.
3. Exact formulations for convection

The time-averaged and once-integrated differential

energy balance for steady fully developed convection

in the fully developed turbulent flow of a single-phase

fluid with invariant physical properties in a concentric

circular annulus may be expressed as

j ¼ �k
dT
dr

þ qcðT 0v0Þ: ð3Þ

Here j is the total local heat flux density in the radial

direction due to both the molecular motion (thermal

conduction) and the fluctuating components of the

velocity (turbulent transport). It follows from an energy

balance over an annular segment of fluid between any

radial location r and the outer radius of the annulus a2
that
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j ¼ qc
2r

Z a2
2

r2
u

oT
oz

� �
dr2: ð4Þ

Following Churchill [11], Eq. (3) may be expressed in

dimensionless form as

j
jw1

1� ðT 0v0Þþþ
h i

¼ dTþ

drþ
; ð5Þ

and Eq. (4) as

j
jw1

¼ 1

R½ða2=a1Þ2 � 1�

Z ða2=a1Þ2

R2

u
um

oT=oz
oTm=oz

� �
dR2: ð6Þ

Here jw1 = j{r = a1}, T+ = k(sx1q)
1/2(Tx1 � T)/ljx1,

ðT 0v0Þþþ ¼ qcðT 0v0Þ=j, and R = r/a1. Since ðT 0v0Þ=j re-

mains positive and finite across the annulus, it is conven-

ient, in spite of the concurrent use of ðu0v0Þþ, to utilize

ðT 0v0Þþþ
, the local fraction of the heat flux density due

to turbulence, rather than ðT 0v0Þþ ¼ qcðT 0v0Þ=jw1 as the

dependent variable . The representation of the turbulent

transport directly in terms of the time-average of the

fluctuating value of T 0v 0 rather than in terms of a heuris-

tic quantity such as the eddy conductivity proves to be

just as advantageous in predicting heat transfer as did

the representation of the turbulent transfer of momen-

tum by ðu0v0Þþþ
or ðu0v0Þþ rather than by the eddy viscos-

ity in predicting flow.

In spite of the complication imposed by the paramet-

ric dependence on Pr, and the lesser data base of exper-

imental values for T 0v0 and T, asymptotic solutions for

ðT 0v0Þþþ
could undoubtedly be derived and utilized to

construct a generalized correlating equation that could

be utilized with Eq. (5) to determine T+r+ and in turn

Tþ
m, just as was done to predict values of u+ and uþm.

However, as shown in Section 7, a quite different and

much better procedure was discovered on the basis of

(1), the use of Prt/Pr rather than ðT 0v0Þþþ
as the explicit

dependent variable, and (2), the use of a formal analogy

between momentum transfer and energy transfer that,

while not exact, is nevertheless free of empiricism.

In order to replace ðT 0v0Þþþ
by Prt/Pr, Churchill [11]

re-expressed Eq. (5) in terms of the eddy conductivity

and thereby in terms of Prt and ðu0v0Þþþ
by means of

the following series of steps:

j
jw1

¼ 1þ kt
k

� �
dTþ

drþ
¼ 1þ kt

clt

� �
cl
k

� 	 lt

l

� �� �
dTþ

drþ

¼ 1þ Pr
Prt

� �
ðu0v0Þþþ

1� ðu0v0Þþþ

� �� �
dTþ

drþ
: ð7Þ

Elimination of dT+/dr+ between Eq. (5) and the latter

form of Eq. (7) then results in

Prt
Pr

¼
ðu0v0Þþþ

1� ðT 0v0Þþþ
� 	

ðT 0v0Þþþ
1� ðu0v0Þþþ
 � : ð8Þ
Eq. (8), which is exact and nominally applicable for all

geometries and thermal boundary conditions, is a sur-

prising result in that Prt is seen to be independent of

its heuristic diffusional origin as clt/kt, and instead sim-

ply an expression for the ratio of the fraction of the ra-

dial transport of momentum (the local shear stress) due

to turbulence to that due to molecular motion, divided

by the corresponding ratio for the transport of energy

(the local heat flux density). Eq. (8) is superficially mis-

leading in that Prt approaches a limiting value as Pr in-

creases, and becomes unbounded as Pr decreases owing

to the variation of ðT 0v0Þþþ
. The principal merits of Prt

vis-à-vis ðT 0v0Þþþ
are (1) its constrained behavior in the

range of ordinary fluids such as air and water, (2) its

minimal dependence on location and the rate of flow

by virtue of their representation by ðu0v0Þþþ
, and (3)

the possibility of its theoretical prediction by renormali-

zation group theory. (See, for example, [12].)

Owing to the singular behavior of ðu0v0Þþþ
in an

annulus, it is convenient to re-express Eq. (8) in terms

of ðu0v0Þþ as follows:

Pr
Prt

¼ ðu0v0Þþ½1� ðT 0v0Þþþ�
ðT 0v0Þþþ½ðs=sw1Þ � ðu0v0Þþ�

: ð9Þ

The correlating equations devised by Kaneda [6] for

ðu0v0Þþ avoid the possibility of singular behavior in Eq.

(9). Substituting for ðT 0v0Þþþ
in Eq. (5) from Eq. (9) re-

sults, after rearrangement, in

j
jw1

¼ 1

aþ1
1þ Pr

Prt

� �
ðu0v0Þþ

s=sw1 � ðu0v0Þþ
� �� �

dTþ

dR
ð10Þ

Here aþ1 ¼ aðsw1qÞ1=2=l. For uniform heating of the

inner wall and no heat flux through the outer wall of the

annulus it may be shown that oT/oz = oTm/oz. Eq. (6)

then reduces to

j
jw1

¼ 1

R½ða2=a1Þ2 � 1�

Z ða2=a1Þ2

R2

u
um

� �
dR2: ð11Þ

Eq. (10) may be integrated formally to obtain

Tþ ¼ aþ1

Z R

1

ðj=jw1ÞdR
1þ Pr

Prt

� 	
ðu0v0Þþ

s=sw1ð Þ�ðu0v0Þþ

� 	 : ð12Þ

The mixed-mean temperature, and thereby the Nusselt

number can in turn be determined by integration of

T+, weighted by u/um over the channel, that is

2ðaþ2 � aþ1 Þ
Nu

� Tþ
m

� 1

ða2=a1Þ2 � 1

Z ða2=a1Þ2

1

Tþ u
um

� �
dR2: ð13Þ

Here a characteristic length of 2(a2 � a1) is implied for

Nu. Substitution in Eq. (13) of T+ from Eq. (12) results

in the double integral
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Tþ
m ¼ aþ1

½ða2=a1Þ2 � 1�


Z ða2=a1Þ2

1

Z R

1

ðj=jw1ÞdR

1þ Pr
Prt

� 	
ðu0v0 Þþ

ðs=sw1Þ�ðu0v0Þþ

� 	
2
64

3
75 u

um

� �
dR2:

ð14Þ

If j/jw1 from Eq. (11) were substituted in Eq. (14) it

would become a triple integral. Although this double

or triple integral can be solved directly by quadrature,

the simultaneous step-wise solution of a finite-difference

formulation of Eq. (10) together with finite-difference

formulations of the differential forms of Eqs. (11) and

(13), is more efficient computationally.. The primary

value of these integral formulations is the revelation that

general expressions for T, Tþ
m, and Nu in terms of the

basic local variables can be placed in such explicit and

compact forms. In the instances of round tubes and par-

allel-plate channels, the replacement of j/jw1 by c =
(j/jw1)/(s/sw1) � 1 in the equivalent of Eq. (14) proved

very useful in that the possibility of integrating the dou-

ble integral by parts then became evident, and the result-

ing reduced forms lead to very simple asymptotic

expressions for Pr = 0 and Pr = Prt. These latter substi-

tutions are not so convenient for annuli because of the

more complex dependence of on r, and, in particular,

its change of sign at r = a0, and they are not therefore

introduced here.
4. An asymptotic expression for Nu‘

In so far as Prt approaches a fixed value, here desig-

nated as Pr�t , at the heated surface, the asymptote for

Pr !1 in fully developed turbulent convection is

Nu ¼ 0:07374Re
fw1
2

� �1=2 Pr
Pr�t

� �1=3

¼ 0:07374Re
fwm
2

� �1=2 Pr
Pr�t

� �1=3 sw1
swm

� �1=2

: ð15Þ

The derivation of Eq. (15), which is free of empiricism

but incorporates a coefficient determined from direct

numerical simulations, may be found in [13,14], as well

as in lesser detail elsewhere. Here fw1 ¼ 2sw1=
qu2m ¼ 2=ðuþmÞ

2

w1. Eq. (15), which is independent of the

choice of a characteristic length, has been found experi-

mentally to be applicable for all shear flows. It may not

be applicable for Pr > 100 because of the possible failure

of Prt to approach a fixed value at the surface (see, [15]),

but, in any event, this is not be a serious limitation in a

practical sense since Pr is less than 100 for all ordinary

fluids.
5. Numerical calculations and required inputs

Numerical calculations for T+ and Tþ
m (and thereby

for Nu) were carried out for Pr = 0, 10�4, 10�3, 10�2,

10�1, 0.3, 0.7, 0.8673, 1, 3, 10, 100, 1000, and 10,000;

for a1/a2 = 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99,

and 0.999; and for a wide range of values of

ðaþ2 � aþ1 Þw1 extending from 150, the lowest possible

value for fully turbulent flow, up to 106, which is beyond

that for any practical application.

As mentioned in Section 3, the numerical computa-

tions were carried out using step-wise integration of dif-

ferential formulations. In order to perform these

numerical integrations for T+ and Tþ
m, it is necessary

to have analytical expressions or numerical values for

s/sw1, a0/a1, amax/a1, ðu0v0Þþ, u+, uþm, and Pr/Prt. Such

expressions and representative tabulated values for a

wide range of conditions were presented in Part I.

The only remaining requirement is an expression for

Prt. The very old but unique set of experimental data of

Abbrecht and Churchill [16] for Prt in a developing tem-

perature field indicate unambiguously that this quantity

is independent of geometry and the thermal boundary

condition on the surface(s) and a function only of Pr

and ðu0v0Þþþ
, at least in the turbulent core. The latest

experimental data and theoretical analyses further sug-

gest that the dependence of Prt on ðu0v0Þþþ
is of second

order. (See [12].) Fortuitously, Nu, as shown by the test

calculations of Yu et al. [17] with several different

expressions for Prt as a function of Pr and ðu0v0Þþþ
, is

very insensitive to this choice. In view of all these consid-

erations, the following numerically modified empirical

equation of Jischa and Rieke [18], which is among the

simplest of those that have been proposed, was utilized

in the current work:

Prt ¼ 0:85þ 0:015

Pr
: ð16Þ

Eq. (16) implies that Prt is independent of ðu0v0Þþþ
and

nearly invariant with respect to Pr for all ordinary fluids

such as air, water, and hydrocarbons.
6. Calculated results

The computed values of Nu0 � Nu{Pr = 0} and

Nu1 = Nu{Pr = Prt}, summarized in Tables 1 and 2,

respectively, as a function of the chosen regular sequence

of values of a1/a2, ðaþ2 � aþ1 Þw1 and Pr. These values of

Nu0 and Nu1 are based on a characteristic length of

2(a2 � a2) in the hope of minimizing the explicit depend-

ence on a1/a2. The corresponding values of

ðuþmÞwm ¼ ðswm=sw1Þ1=2ðuþmÞw1, as determined from the

directly computed and tabulated values of ðuþmÞw1 by

Kaneda et al. [6] are listed in Table 3. The blank spaces

in Tables 1–3 represent conditions for which the achieve-



Table 1

Computed values of Nu0

a1/a2 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.99 0.999

swm/sw1 0.4239 0.6382 0.7425 0.8420 0.9479 0.9860 0.9937 0.9970 0.9994 0.9999

ðaþ2 � aþ1 Þw1
150 17.12 11.48 8.294 6.193 5.729 5.659 5.632 5.614 5.610

500 52.27 17.21 11.54 8.333 6.284 5.847 5.784 5.761 5.745 5.742

800 52.32 17.20 11.55 8.342 6.303 5.874 5.813 5.790 5.775 5.772

1000 52.28 17.20 11.55 8.345 6.310 5.884 5.824 5.801 5.787 5.784

2000 52.25 17.20 11.55 8.350 6.325 5.907 5.849 5.828 5.814 5.811

5000 17.19 11.54 8.351 6.337 5.927 5.871 5.851 5.838 5.835

10,000 17.18 11.54 8.350 6.343 5.937 5.883 5.864 5.851 5.848

20,000 11.53 8.348 6.348 5.946 5.893 5.874 5.862 5.860

50,000 11.52 8.347 6.354 5.958 5.906 5.888 5.876 5.874

100,000 11.52 8.348 6.360 5.967 5.917 5.899 5.888 5.885

200,000 8.351 6.369 5.980 5.931 5.913 5.902 5.900

500,000 8.364 6.391 6.009 5.961 5.945 5.934 5.932

Table 2

Computed values of Nu1

a1/a2 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.99 0.999

swm/sw1 0.4239 0.6382 0.7425 0.8420 0.9479 0.9860 0.9937 0.9970 0.9994 0.9999

ðaþ2 � aþ1 Þw1
150 33.80 22.00 13.91 13.81 14.45 14.65 14.75 14.82 14.84

500 98.33 46.55 42.86 40.87 40.72 41.66 41.97 42.12 42.24 42.27

800 101.2 72.24 66.80 63.29 62.53 63.74 64.15 64.35 64.51 64.54

1000 116.0 89.64 82.56 77.89 76.69 78.07 78.56 78.80 78.98 79.02

2000 222.6 177.4 159.6 148.4 144.9 147.1 147.9 148.3 148.6 148.7

5000 445.9 381.7 348.1 337.1 341.7 343.4 344.3 345.0 345.1

10,000 837.3 740.5 665.2 640.7 648.8 652.1 653.6 654.7 655.0

20,000 1443 1275 1221 1236 1241 1244 1246 1247

50,000 3531 3035 2880 2909 2922 2928 2933 2934

100,000 6683 5892 5539 5585 5608 5619 5628 5628

200,000 11,560 10,720 10,780 10,820 10,830 10,850 10,850

500,000 29,160 26,150 26,080 26,130 26,150 26,180 26,160

Table 3

Derived values of ðuþmÞwm
a1/a2 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.99 0.999

sw1/swm 2.359 1.567 1.347 1.188 1.055 1.014 1.006 1.003 1.001 1.000

ðaþ2 � aþ1 Þw1
150 12.07 12.28 12.52 12.58 12.57 12.57 12.56 12.56 12.56

500 15.80 16.33 16.49 16.62 16.75 16.81 16.82 16.83 16.83 16.83

800 17.21 17.66 17.81 17.94 18.07 18.14 18.16 18.17 18.17 18.18

1000 17.81 18.26 18.41 18.53 18.67 18.74 18.76 18.77 18.77 18.78

2000 19.61 20.02 20.16 20.27 20.41 20.50 20.52 20.53 20.54 20.54

5000 22.23 22.35 22.46 22.60 22.69 22.72 22.74 22.75 22.75

10,000 23.83 23.95 24.06 24.21 24.31 24.34 24.35 24.37 24.37

20,000 25.53 25.64 25.79 25.90 25.93 25.95 25.96 25.97

50,000 27.58 27.68 27.85 27.97 28.00 28.02 28.04 28.04

100,000 29.08 29.19 29.36 29.49 29.53 29.55 29.57 29.57

200,000 30.61 30.80 30.95 30.99 31.02 31.03 31.04

500,000 32.25 32.48 32.66 32.71 32.74 32.76 32.76
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ment of fully developed turbulence or convergence of

the computations for either the velocity field as indi-

cated by the mismatching of the peak in the velocity

or the equivalent in the temperature field was uncertain

or for which some other anomaly such as a value of the

Reynolds number below the presumed minimum for

fully developed turbulent flow was observed. Values

of sw1/swm are included in Tables 1 and 2 for conven-

ience because these latter quantities are utilized directly

in the correlating expressions for Nu0 and Nu1 that are

developed here and in more general form in Part IV for

values of a1/a2 and ðaþ2 � aþ1 Þw1 intermediate to those

listed.

The tabulations of Nu0 and Nu1 provide an econom-

ical but sufficient representation of the computations for

heat transfer since, as shown in the next section, they can

be used to calculate Nu, with virtually no added error,

from simple algebraic expressions for all values of Prt/

Pr.

The values of ðuþmÞwm in Table 3 may be observed to

be virtually independent of a1/a2. On this basis Kaneda

et al. [6] suggested their approximate representation

by

ðuþmÞwm ¼ 2

fwm

� �1=2

¼ 3:2þ 1

0:436
lnfReðfwm=8Þ1=2g �

275

Reðfwm=8Þ1=2
:

ð17Þ

Eq. (17) differs from the prior expression of Yu et al.

[17] for round tubes and that of Danov et al. [19]

for parallel-plate channels only in the last term. This

term is an arbitrary approximation for the differing

terms for the decrease in the mean velocity due to

the departure from semi-logarithmic behavior in the

viscous and buffer layers. Values of uþm and f are here

normalized in Eq. (17) in terms of swm rather than in

terms of sw1, not only because the of the virtual elim-

ination of a1/a2 as a parameter, because also because

of the more direct practical interest ensuing from the

following relationship between swm and the pressure

gradient:

� dP
dx

� �
¼ 2ða1sw1 þ a2sw1Þ

ða22 � a21Þ
¼ 2sm

a2 � a1
: ð18Þ

The dichotomy in the normalization of uþm, f, and

aþ2 � aþ1 in terms of sw1 in some instances and in terms

of swm in others is essentially unavoidable because um
was not known in advance, precluding the choice of a

series of regular values of Re or ðaþ2 � aþ1 Þwm for the

numerical integrations, and because the behavior of

the flow near the wall depends directly on sw1 rather

than on swm.
7. Representation of the calculated values

An expression for representation of computed values

of Nu for a round tube was devised by Churchill et al.

[20] on the basis of the analogy of Reichardt [21], as

assembled in compact form and corrected by Churchill

[14], namely

1

Nu
¼ Prt

Pr

� �
1

Nu1
þ 1� Prt

Pr

� �� �
1

Nu1
: ð19Þ

Eq. (19), which is free of any explicit empiricism, is obvi-

ously valid only for Prt/Pr 6 1, but its analog for Prt/

Pr P 1 may readily be inferred on the basis of symme-

try. These two expressions proved to be very successful

for representation of computed values of Nu for both

round tubes and parallel-plate channels, and, as specu-

lated in advance, for several different thermal boundary

conditions. Indeed, the deviations were barely distin-

guishable visually in plots in logarithmic coordinates.

However, Churchill and Zajic [22] determined by means

of more critical comparisons that the deviations were

actually as great as 10% for Pr of the order of 10, and

as great as 30% for Pr of the order of 0.01. They con-

cluded that these deviations were a consequence of the

idealizations made by Reichardt [21] in order to be able

to integrate the combined differential momentum and

energy balance analytically. When an alternative anal-

ogy, derived earlier by Churchill [14] but not at first rec-

ognized as necessarily an improvement for want of

sufficiently accurate computed values or experimental

data to provide a critical comparison with that of

Reichardt, was substituted these deviations vanished

for all practical purposes. The revised expression for

Prt/Pr 6 1 has the form:

1

Nu
¼ Prt

Pr

� �
1

Nu1
þ 1� Prt

Pr

� �2=3
 !

1

Nu1
: ð20Þ

Insofar as the effect of the variation in Prt with Pr over

the range of applicability of Eq. (20) is negligible, Eq.

(20) can be simplified to

1

Nu
¼ Prt

Pr
1

Nu1
þ Pr

Prt

� �2=3

� 1

" #
1

Nu11

 !
: ð21Þ

Here, Nu11 � Nu1fPr ¼ Prtg ¼ 0:07343Reðfw1=2Þ1=2 ¼
0:07343Reðfwm=2Þ1=2ðsw1=swmÞ1=2. The simplification

consists of the elimination of Pr�t , which a parameter

of Nu1 but not of Nu11. The resulting maximum numer-

ical error is less than 0.7%.

The analogue of Eq. (21) for Prt/Pr P 1 is

Nu1 � Nu0
Nu1 � Nu

¼ 1þ ðPrt=PrÞ1=8ðNu1 � Nu0ÞNu11
Prt
Pr � 1

 �

Nu11 � 2
3
Nu1


 �
Nu1

ð22Þ
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The exponent of 1/8 in Eq. (22) is the only empirical

element in any of these expressions, and the impact of

the term (Prt/Pr)
1/8 on Nu is quite limited owing to the

dominance of the term (Prt/Pr � 1).

As may be seen in Fig. 1, Eqs. (21) and (22), together

with Nu0 and Nu1 from Tables 1 and 2, and Nu1 and

Nu11 from Eq. (15), represent the dependence of the

computed values of Nu on Pr/Prt almost perfectly for

all values of ðaþ2 � aþ1 Þw1 and all values of a1/a2, except

for the range of Prt/Pr = 103–104 for a1/a2 = 0.01, which,

in view of the overall success of Eq. (22), may indicate

mild error in these particular computed values rather

than in the correlative expression. The overall represen-

tation of the computed values of Nu for annuli by Eqs.

(21) and (22) is not only a great success in its own right,

but in view of this third geometry and the unsymmetrical

thermal boundary condition, it appears to provide the

final confirmation of the conjecture of Churchill et al.

[20] of the complete generality of these two expressions

in both of these respects.

For direct comparisons with experimental or prior

computed values of Nu it is necessary to interpolate
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Fig. 1. Representation of computed values of N
the values of Nu0 and Nu1 in Tables 1 and 2 for interme-

diate values of a1/a2 and ðaþ2 � aþ1 Þw1. Generalized,

empirical correlating equations for such interpolations

for all geometries and conditions are presented in Part

IV. For the more constrained conditions encompassed

by the prior experimental work, namely air, water, and

mercury at Re < 250,000, the following simple expres-

sions proved to be adequate:

Nu0 ¼
5:89 1þ 0:0703

ða1=a2Þ2

� 	1=3
1þ 0:8

ðuþmÞwm
a1
a2

� 	 ð23Þ

and

Nu1 ¼
ð1þ 0:288ða1=a2Þ0:28ÞReðsw1=swmÞ

1:288ðuþmÞ
2

wm 1þ 53:3
ðuþmÞwm

� 	3� �1=10:6
: ð24Þ

Eqs. (23) and (24) represent the values in Tables 1 and 2

almost exactly for Re < 100,000 and a1/a2 P 0.1, and

reasonably well for 100,000 < Re < 240,000 and 0.01 6

a1/a2 6 0.1.
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u with predictions of Eqs. (21) and (22).



Fig. 2. Computed heat flux density ratio as a function of distance from the wall.
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The plots in Fig. 2 of j/jw1 versus the fractional dis-

tance across the channel indicate that this quantity ap-

proaches zero in the inner region and is thereby of

very small magnitude in the outer region.
8. Comparisons with prior computed and experimental

values

Experimental data for the time-averaged velocity

distribution were utilized in Part 1 to provide a critical

test of the numerically computed values and thereby of

the empiricisms in the modeling of the flow, namely the

correlating equations for a0, amax, and ðu0v0Þþ. Experi-
mental data of equivalent extent and reliability do

not exist for the time-averaged temperature distribu-

tion. Therefore comparisons of the results of the ther-

mal computations with experimental data are limited

to the Nusselt number. Although many sets of experi-

mental data for Nu were found, they are generally

very old and subject to large temperature differences,

and thereby to significant variations in k and l. Very
small inner diameters, and especially those corre-

sponding to electrically heated wires, are subject to

misalignment and/or mislocation, the slightest degree
of which distorts the flow and thereby affects the rate

of convection.

Because Nu is a function of many independent varia-

bles and parameters, including, Re, Pr, a1/a2, T
þ
m, and

Tw/Tm, and because the experimental data are generally

for irregularly spaced values of these quantities, para-

metric plots are not feasible for comparison with the

predictions. Instead the comparisons were made in terms

of plots of Nuexp from Carpenter et al. [23], McMillan

and Larson [24], Dufinescz and Marcus [25], Monrad

and Pelton [26], T.E.M.A. [27], and Miller et al. [28] ver-

susNupred for water (2 6 Pr 6 10), from Leung [1], Mon-

rad and Pelton [26], T.E.M.A. [27], Petukhov and Roizen

[29], Roberts and Barrow [30], Quarmby [31], Vilemas et

al. [32], and Zerban [33] for air (Pr ffi 0.70), and from

Trefethan [34] for mercury (0.01 6 Pr 6 0.03), as shown

in Figs. 3–5, respectively, with the sources and parame-

ters of each set or segment or data identified by coding.

Except in the few instances in which sufficient infor-

mation was given to permit calculation of the average

value of the wall and mixed-mean temperatures, the val-

ues of Nu, Re, and Pr given by the authors were neces-

sarily utilized in the comparisons with the predicted

values of Nu. When sufficient details were given, the

value of Pr for water was evaluated at the average of
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Fig. 3. Comparison of predicted values with experimental data for water and predictions of Kays and Leung [3].
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the wall and mixed-mean temperatures for each experi-

mental point. In the absence of specified temperatures

for the individual data points for mercury, a mean value

of Pr = 0.02 was used. For data given only in the com-

posite forms such as Nu/Re(f/2)1/2Prn, values of f, Pr

and n were necessarily estimated. For experiments in

which z/D was varied, the apparent asymptotic value

of Nu was estimated. Vilemas et al. [32] are the only

experimenters to have followed the commendable prac-

tice of extrapolating their values of Nu to zero tempera-
ture-difference. The several sets of data in which a

heated wire was used for the inner surface were excluded

from Figs. 3 and 4 both because they were for values of

a1/a2 far less than those of the numerical integrations,

and because they were wildly scattered, particularly on

the high side. The data for heated rods and for moderate

aspect ratios did not demonstrate such extreme behavior

and were retained.

The predictions of Eq. (21) and its components ap-

pear in Fig. 3 to be in good agreement on the mean with
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the experimental data for water, and it seems reasonable

to attribute the deviations to physical property, entrance,

and alignment effects as well as to experimental or predic-

tive error. The experiments of McMillan and Larson [24]

for heating and cooling of water are identified by sepa-

rate symbols. Their values of Nu for cooling may be ob-

served to be slightly higher on the mean than those for

heating, and this effect is confirmed more definitively

by direct comparison of the numerical values of Nu for

the same values of a1/a2 and approximately the same val-

ues ofRe. The values ofNu plotted in Figs. 3 and 4 for all

other investigators are for heating of the fluid.

As shown in Fig. 4, the deviations of the experimen-

tal data for air are somewhat greater than those in Fig. 3

for water, and those sets of data that might be presumed

to be most accurate deviate somewhat consistently on

the high side. No simple explanation has been found

for this latter, seemingly coherent difference. It may be

inferred from the experimental results of McMillan

and Larson for water that heating air would produce

positive deviations since the effect of temperature on

the viscosity is opposite to that for water. Also, the ef-

fects of buoyancy and disturbances, both of which

would be expected to increase Nu, might be expected

to be greater for air, but a more quantitative explanation

must await experimental and/or computations focused

on these effects.

The single set of experimental data for mercury may

be observed in Fig. 5 to differ more greatly than those

for water and air on the mean but such deviations are

perhaps to be expected in consideration of the inherent

experimental difficulties with that fluid. It is possible that

the negative deviations are a result of the failure to at-

tain fully turbulent flow.

The computed values of Kays and Leung [3] for par-

allel plates are represented in Figs. 3–5 by large circles.

Those for water are arbitraily based on Pr = 3.0 and

those for mercury on Pr = 0.03, but such approxima-
tions would be expected to have a negligible effect in this

graphical form because the same values were used in

both sets of predictions. The predicted values of Kays

and Leung are seen to differ negligibly from the predic-

tions herein for water. They are slightly higher on the

mean than the present predictions for air but neverthe-

less much closer to the latter than to the overlying band

of experimental data. They are significantly lower than

either the present predictions or the experimental data

for mercury. A more direct and critical comparison of

the earlier and present predictions in tabular form gen-

erally confirms these visual observations, and in addition

indicates a more rapid increase in Nu as a1/a2 decreases.

Such tabular comparisons are not presented here be-

cause the numerical and functional differences in Nu

are simply an artifact of the different models used for

the turbulent shear and the turbulent Prandtl number

and not particularly meaningful in themselves. The dif-

ferences in the models themselves are discussed in the

next section.
9. Evaluation and interpretation

It is difficult to identify the causes of the large differ-

ences between the various sets of experimental data for

Nu for roughly the same conditions because of incom-

plete quantitative characterizations by the experiment-

ers. A need clearly exists for new, more accurate and

more extensive data for turbulent convection in annuli,

particularly for small temperature-differences, in order

to eliminate physical property variation as a variable,

or for a series of fixed temperature-differences, in order

to define such effects. Data for liquids other than water

and mercury are also needed. In the interim until such

data are obtained, confidence in the generality and accu-

racy of the computed values must depend to a consider-

able degree on the following assessment of their

theoretical credentials.

The new computed values of Nu are subject to errors

of two types—idealizations in the differential model and

in the discretization in the numerical integration. The

convergence of the numerical calculations as the grid-

size was reduced and the comparative use of more than

one numerical algorithm for integration would appear

to eliminate effectively the latter source of error. The

error due to the idealizations in the model itself is more

difficult to assess. The excellent agreement of prior com-

puted values of Nu by Heng et al. [8] and Yu et al. [17]

for round tubes, and by Danov et al. [19] for parallel-

plate channels with experimental data appears to vali-

date the general model. Even more importantly, the

excellent agreement of the predicted and measured val-

ues of the time-averaged velocity distribution and the

friction factor for annuli, as reported by Kaneda et al.

[6] in Part I of this investigation, suggests that the correl-
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ative and predictive equations for a0, amax, ðu0v0Þþ, u+,
and uþm are not a significant source of uncertainty in

the modeling of T+ and Nu for annuli. Also, because

Eqs. (11)–(13) are exact formulations, the only addi-

tional source of uncertainty relative to that for flow

arises from the expression for Prt. Unfortunately, as re-

cently noted by Kays [35] and Churchill [14], this quan-

tity is still subject to considerable uncertainty, both

functionally and numerically. On the other hand, as

mentioned in Section 5, the uncertainty in Nu resulting

from this uncertainty Prt is much less. The principal

uncertainty in Prt is for very small and very large values

of Pr. For very small values of Pr, molecular transport is

dominant over turbulent transport and hence Pr rather

than Prt is the controlling factor. Also, no ordinary flu-

ids, even including liquid metals, have Prandtl numbers

less than about 0.01. At the other extreme, no ordinary

fluids have Prandtl numbers greater than about 100, and

the effect of the limited uncertainty in the value of Prt on

Nu for Pr > 0.8673 is reduced by the 1/3-power depend-

ence of Nu1 on (Pr/Pr1/3).

Owing to the essentially exact expression used for

ðu0v0Þþ as compared to the inaccurate values used in

the past for the eddy viscosity and the mixing-length,

and in many instances owing to the less accurate expres-

sions used for the time-averaged velocity and heat flux

density distributions as well, the new computed values

of Nu are presumed to be superior in numerical and

functional accuracy to all those of the past, with the

exception of the limited ones for very small Re obtained

by DNS. Even so, the quantitative improvement in the

prediction of Nu is quite small, as is demonstrated by

the comparisons in Figs. 3–5 of the current predictions

with those of Kays and Leung [3], which were based

on (1) the eddy diffusivity, a quantity that is now known

to be fundamentally unsound in an annulus; (2) a veloc-

ity, distribution which is incoherent with the the expres-

sion used for the eddy viscosity; and (3) a fourth-power

dependence of the turbulent shear stress on y+ near the

wall, whereas a third-power dependence has recently

been confirmed beyond any question by DNS. There

are two explanations for the limited improvement in a

numerical sense. One is the insensitivity of Nu to the

expressions used for the eddy diffusivity and the velocity

distribution because of the smoothing resulting from the

double integration to obtain Tþ
m. The other is that the

arbitrary coefficients of the two models are ultimately

based on essentially the same experimental values of

the velocity distribution.

On the other hand, the improvement of the new pre-

dictions, as represented by Eqs. (21) and (22), over all

prior correlating equations in the form of products of

power functions is very significant in terms of both func-

tionality and scope. These new predictive expressions

incorporate a widely varying but essentially exact

dependence on Pr for a complete range of that variable,
and an equivalent coupled dependence on Re for all val-

ues in the turbulent regime. These new predictive expres-

sions appear to share one feature with many of the

classical power-law expressions, namely an independ-

ence from a1/a2 insofar as Nu and Re are expressed in

terms of the hydraulic diameter. However this commo-

nality is merely superficial. The new predictive expres-

sions introduce a dependence on a1/a2 by virtue Nu0
and Nu1.
10. Numerical implementation of the new predictive

expressions

The implementation of Eqs. (21) and (22) to obtain a

numerical value of Nu for any value of Pr for one of the

pairs of values of ðaþ2 � aþ1 Þw1 and a1/a2 chosen for the

illustrative computations only requires the supplemental

use of Eq. (16) or its equivalent for Prt, and the appro-

priate values for Nu0 and Nu1 from Tables 2 and 3. The

corresponding value of Re is given in Table 5 of Part I

[6]. This greater complexity as compared to that in-

volved in numerical evaluations using traditional corre-

lating equations in the form of the product of powers of

Re and Pr is a small price to pay for the much better

functionality and the far greater scope of the new expres-

sions, even apart from the moderate improvement in

numerical accuracy. Also, this complexity is not a factor

if even a handheld calculator is utilized.

For values of ðaþ2 � aþ1 Þw1 (or Re) and a1/a2 interme-

diate to those chosen for the illustrative computations it

is necessary to (1) carry out additional numerical inte-

grations for the velocity distribution and the mixed-

mean velocity or utilize the correlating equations given

in Part I for the former and Eq. (17) for the latter,

and (2) carry out additional numerical integrations for

Nu or utilize Eqs. (23) and (24), which in turn require

in addition to the value ðuþmÞwm, a value for sw1/swm as

obtained from algebraic equations given in Part I.
11. Conclusions

The new numerically computed solutions for Nu for

fully developed turbulent convection in an annulus

heated uniformly on the inner wall are concluded on

the basis of theoretical considerations to be more accu-

rate numerically and particularly functionally than any

prior ones. The new predictive equations, which repro-

duce the numerically computed values almost exactly,

encompass all values of Pr, a wide range of aspect ratios,

and the complete range of Re for fully developed turbu-

lent convection. The available experimental data appear

to confirm these assertions, but because of their limited

scope and differences from set to set they do not provide

a critical test of the new predictions.
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